Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 402: 130807, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723727

ABSTRACT

The textile industry discharges up to 5 % of their dyes in aqueous effluents. Here, use of spent mushroom substrate (SMS) of commercial white button mushroom production and its aqueous extract, SMS tea, was assessed to remove textile dyes from water. A total of 30-90 % and 5-85 % of the dyes was removed after a 24 h incubation in SMS and SMS tea, respectively. Removal of malachite green and remazol brilliant blue R was similar in SMS and its tea. In contrast, removal of crystal violet, orange G, and rose bengal was higher in SMS, explained by sorption to SMS and by the role of non-water-extractable SMS components in discoloration. Heat-treating SMS and its tea, thereby inactivating enzymes, reduced dye removal to 8-58 % and 0-31 %, respectively, indicating that dyes are removed by both enzymatic and non-enzymatic activities. Together, SMS of white button mushroom production has high potential to treat textile-dye-polluted aqueous effluents.

2.
Appl Microbiol Biotechnol ; 108(1): 301, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639797

ABSTRACT

Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0-26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to < 10% except for carbamazepine with a removal of 90%. These results indicate that OMP removal by SMS and its tea is mediated by both enzymatic and non-enzymatic activities. The presence of copper, manganese, and iron (0.03, 0.88, and 0.33 µg L-1, respectively) as well as H2O2 (1.5 µM) in SMS tea indicated that the Fenton reaction represents (part of) the non-enzymatic activity. Indeed, the in vitro reconstituted Fenton reaction removed OMPs > 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs.


Subject(s)
Agaricus , Ecosystem , Caffeine , Hydrogen Peroxide , Water , Tea , Carbamazepine
3.
Membranes (Basel) ; 13(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623802

ABSTRACT

In a single-step spinning process, we create a thin-walled, robust hollow fiber support made of Torlon® polyamide-imide featuring an intermediate polyethyleneimine (PEI) lumen layer to facilitate the integration and covalent attachment of a dense selective layer. Subsequently, interfacial polymerization of m-phenylenediamine and trimesoyl chloride forms a dense selective polyamide (PA) layer on the inside of the hollow fiber. The resulting thin-film composite hollow fiber membranes show high NaCl rejections of around 96% with a pure water permeability of 1.2 LMH/bar. The high success rate of fabricating the thin-film composite hollow fiber membrane proves our hypothesis of a supporting effect of the intermediate PEI layer on separation layer formation. This work marks a step towards the development of a robust method for the large-scale manufacturing of thin-film composite hollow fiber membranes for reverse osmosis and nanofiltration.

4.
J Microbiol Methods ; 196: 106452, 2022 05.
Article in English | MEDLINE | ID: mdl-35341879

ABSTRACT

Pure-water filtration membranes are often fouled by bacterial biofilms. Antibacterial coatings for preventing biofilm formation on such membranes should not rely on leaching of inhibiting compounds but should only be effective on surface contact. Certified assays for antibacterial coatings do not sufficiently exclude leaching effects and involve nutrient-rich cultivation media that do not correspond to conditions in pure-water systems. In this study, a two-step bioluminescence assay was developed for optimizing an antibacterial coating of PES/PVP ultrafiltration hollow-fiber membranes with a polydopamine as a sustainable, bio-inspired material for preventing bacterial biofilm formation. In the first step, leaching of the antimicrobial coating was analyzed by a bioluminescence assay with supernatants generated by washing coated membranes. In the second step, bioluminescence of bacterial biofilms on coated and uncoated membranes was measured using a nutrient-poor medium resembling site-specific conditions. Based on this bioluminescence assay, an optimized protocol for the coating process could be established by acidic polymerization of dopamine using 2 g/L sodium periodate and 4 g/L dopamine at 40 °C for 20 min reaction time. With coatings produced in this way, bioluminescence was reduced on coated membranes only while the corresponding supernatants exhibited no inhibitory effects.


Subject(s)
Coated Materials, Biocompatible , Dopamine , Anti-Bacterial Agents/pharmacology , Biofilms , Coated Materials, Biocompatible/pharmacology , Dopamine/pharmacology , Indoles , Polymers , Water/pharmacology
5.
Membranes (Basel) ; 12(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35323764

ABSTRACT

The objectives of this study are to assess the performance of antiscalants in increasing the recovery (≥85%) of a reverse osmosis (RO) plant treating anaerobic groundwater (GW) in Kamerik (the Netherlands), and to identify scalants/foulant that may limit RO recovery. Five different commercially available antiscalants were compared on the basis of their manufacturer-recommended dose. Their ability to increase the recovery from 80% to a target of 85% was evaluated in pilot-scale measurements with anaerobic GW and in once-through lab-scale RO tests with synthetic (artificial) feedwater. A membrane autopsy was performed on the tail element(s) with decreased permeability. X-ray photoelectron spectroscopy (XPS) analysis indicated that calcium phosphate was the primary scalant causing permeability decline at 85% recovery and limiting RO recovery. The addition of antiscalant had no positive effect on RO operation and scaling prevention, since at 85% recovery, permeability of the last stage decreased with all five antiscalants, while no decrease in permeability was observed without the addition of antiscalant at 80% recovery. In addition, in lab-scale RO tests executed with synthetic feed water containing identical calcium and phosphate concentrations as the anaerobic GW, calcium phosphate scaling occurred both with and without antiscalant at 85% recovery, while at 80% recovery without antiscalant, calcium phosphate did not precipitate in the RO element. In brief, calcium phosphate appeared to be the main scalant limiting RO recovery, and antiscalants were unable to prevent calcium phosphate scaling or to achieve a recovery of 85% or higher.

6.
Water Res ; 203: 117506, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34371231

ABSTRACT

The bacterial growth potential (BGP) of drinking water is widely assessed either by flow cytometric intact cell count (BGPICC) or adenosine triphosphate (BGPATP) based methods. Combining BGPICC and BGPATP measurements has been previously applied for various types of drinking water having high to low growth potential. However, this has not been applied for water with ultra-low nutrient content, such as remineralised RO permeate. To conduct a sound comparison, conventionally treated drinking water was included in this study, which was also used as an inoculum source. BGPICC, BGPATP, intact cell-yield (YICC), and ATP-yield (YATP) were determined for conventionally treated drinking water (Tap-water) and remineralised RO permeate (RO-water). In addition, both BGPICC and BGPATP methods were used to identify the growth-limiting nutrient in each water type. The results showed that the BGPICC ratio between Tap-water/RO-water was ∼7.5, whereas the BGPATP ratio was only ∼4.5. Moreover, the YICC ratio between Tap-water/RO-water was ∼2 (9.8 ± 0.6 × 106 vs. 4.6 ± 0.8 × 106 cells/µg-C), whereas the YATP ratio was ∼1 (0.39 ± 0.12 vs. 0.42 ± 0.06 ng ATP/µg-C), resulting in a consistently higher ATP per cell in RO-water than that of Tap-water. Both BGPICC and BGPATP methods revealed that carbon was the growth-limiting nutrient in the two types of water. However, with the addition of extra carbon, phosphate limitation was detected only with the BGPICC method, whereas BGPATP was not affected, suggesting that a combination of carbon and phosphate is essential for biomass synthesis, whereas carbon is probably utilised for cellular activities other than cell synthesis when phosphate is limited. It was estimated that the intact cell-yield growing on phosphate would be 0.70 ± 0.05 × 109 cells/µg PO4-P.


Subject(s)
Drinking Water , Water Purification , Adenosine Triphosphate , Cell Count , Nutrients , Osmosis
7.
Water Res ; 195: 116959, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676179

ABSTRACT

The properties of biofilm EPS are determined by the multiple interactions between its constituents and the surrounding environment. Because of the high complexity of biofilm EPS, its constituents' characterisation is still far from thorough, and identification of these interactions cannot be done yet. Therefore, we use gels of bacterial alginate-like exopolysaccharides (ALEs) as a model component for biofilm EPS in this work. These gels have been examined for their cohesive properties as a function of CaCl2 and KCl concentration. Hereto, ALE gel layers were formed on membranes by dead-end filtration of ALE solutions. Accumulation of the cations Ca2+ and K+ in the gels could be well predicted from a Donnan equilibrium model based on the fixed negative charges in the ALE. This suggests that there is no specific binding of Ca2+ to the ALE and that on the time scale of the experiments, the Ca2+ ions can distribute freely over the gel and the surrounding solution. The concentration of fixed negative charges in the ALE was estimated around 1 mmol/g VSS (volatile suspended solids, organic mass) from the Donnan equilibrium. Moreover, an accumulation of H+ was predicted. Gels with more CaCl2 in the supernatant were more compact and bore a higher osmotic pressure than those with less CaCl2, revealing the role of Ca2+ ions in the network crosslinking. It is hypothesised that this mechanism later transitions into a rearrangement of the ALE molecules, which eventually leads to a fibrous network structure with large voids.


Subject(s)
Alginates , Extracellular Polymeric Substance Matrix , Biofilms , Gels , Ions
8.
Water Res ; 71: 171-86, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25616114

ABSTRACT

Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules.


Subject(s)
Biofouling , Filtration/instrumentation , Membranes, Artificial , Water Purification/instrumentation , Biofilms , Escherichia coli , Filtration/methods , Hydrogel, Polyethylene Glycol Dimethacrylate , Polypropylenes/chemistry , Water Purification/methods
9.
Water Res ; 48: 498-507, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24156950

ABSTRACT

Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can potentially be adopted as an effective process for RO pre-treatment in order to constrain biofouling by phosphate limitation. This paper focuses on electrostatic interactions during tight UF filtration. Despite the larger pore size, the 3 kDa ceramic membrane exhibited greater phosphate rejection than the 1 kDa membrane, because the 3 kDa membrane has a greater negative surface charge and thus greater electrostatic repulsion against phosphate. The increase of pH from 6 to 8.5 led to a substantial increase in phosphate rejection by both membranes due to increased electrostatic repulsion. At pH 8.5, the maximum phosphate rejections achieved by the 1 kDa and 3 kDa membrane were 75% and 86%, respectively. A Debye ratio (ratio of the Debye length to the pore radius) is introduced in order to evaluate double layer overlapping in tight UF membranes. Threshold Debye ratios were determined as 2 and 1 for the 1 kDa and 3 kDa membranes, respectively. A Debye ratio below the threshold Debye ratio leads to dramatically decreased phosphate rejection by tight UF membranes. The phosphate rejection by the tight UF, in combination with chemical phosphate removal by coagulation, might accomplish phosphate-limited conditions for biological growth and thus prevent biofouling in the RO systems.


Subject(s)
Ceramics , Membranes, Artificial , Phosphates/chemistry , Static Electricity , Biofouling , Osmosis , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL
...